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Abstract—The isogyre equation determining the functional dependence between the coordinates of optical
axes and isogyre points, valid for any cross sections in uniaxial and biaxial crystals, has been derived. It is used
for plotting an isogyre and solving the inverse problem of determining the angle between the optical axes and
the elements of orientation of a crystal’s optical indicatrix.
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INTRODUCTION

The conoscopic method of studying crystals is
based on the observation of the interference pattern
obtained as a result of the transmission of a convergent
light beam through a crystal plate located between
crossed polarizer and analyzer. This method gives valu-
able information about some properties of a crystal,
such as the number of optical axes, their dispersion, the
angle between them, and the optical sign of the crystal.

Although great success has been achieved in recent
decades in the simulation and interpretation of interfer-
ence patterns, the level of applications of the cono-
scopic method (if we speak about a conoscope of a
polarization microscope) corresponds to the beginning
of the 20th century. The most significant gap is the
absence of clear unambiguous understanding of the
relationship between the orientation of crystal optical
axes and the shape of dark fringes (isogyres) in the
conoscopic pattern. This relationship can be described
by an isogyre equation. Having this equation, one can
determine the isogyre position in the field of view of the
conoscope from the input parameters (the known direc-
tions of the crystal optical axes) and solve the inverse
problem (which is more valuable for practical pur-
poses), i.e., calculate the angle between the optical axes
and the elements of orientation of the optical indicatrix
from the coordinates of isogyre points.

After the first observations of interference patterns
(last quarter of the 19th century), many researchers
tried to explain their formation and plot isogyres via
different techniques: calculations based on the hyper-
bola equation [1] with the use of auxiliary lines show-
ing the direction of light oscillations in a crystal (skio-
dromes) [2], the simplified Fresnel rule [3], and solu-
tion of the problem of determining the directions of
light oscillations in a stereographic projection [4].

In [5, 6], an isogyre is considered as a locus of an
interference pattern, in which the directions of light
oscillations are parallel to the main cross sections of

Nicols. This concept of an isogyre contradicts an evi-
dent fact: in the case of incidence of oblique rays, the
projections of two mutually perpendicular vectors of
light oscillations in the crystal on the plane of a cono-
scopic pattern form in the general case skew angles,
which cannot be aligned with the two mutually perpen-
dicular main cross sections of Nicols.

In [7], an isogyre obtained by calculation of the
intensity of passing light for a set of points of the cono-
scopic pattern was observed on a display. The main
refractive indices N,, N, and N, and the elements of
orientation of the plane cutting the optical indicatrix in
the direction parallel to the plane of the crystal plate

(three more parameters) were used as the initial data.

In [8, 9], the theory of formation of conoscopic pat-
terns and the effect of different types of polarized radi-
ation and a change in the angle between polarizer and
analyzer on their shape were described and the criteria
for the difference between the conoscopic patterns of
optically active and inactive crystals were established.
Unfortunately, not all these findings are applicable in the
investigation of laps of rocks and minerals in a cono-
scope of a polarization microscope owing to the fuzzi-
ness of the conoscopic pattern and the small thickness
of laps (as a result of which the phenomenon of rotation
of the plane of polarization cannot be detected).

The purpose of this study is to derive the isogyre
equation and apply it to some specific problems.

DERIVATION OF THE ISOGYRE
EQUATION

Let us consider the formation of the isogyre of a
conoscopic pattern. Let a crystal plate cut arbitrarily
from a biaxial crystal be located between the crossed
Nicols of a polarization microscope. In the rear focal
plane of the objective, a system of bright and dark
fringes forming the conoscopic pattern will be
observed.
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The light intensity at each point of the conoscopic
pattern can be written as

B = Iosinz(v'—v”)cosz(v'+V"), (1)

where [, is the incident light intensity and v' and v" are
the angles formed by the projections n' and n" of the
light oscillation vectors with the X axis (i.e., with the
direction of light oscillations in one of the Nicols, see
Fig. 1).

Formula (1) was derived in [10] for oblique inci-
dence of light on the basis of the formula reported in
[11] for normal incidence of light.

The projections n' and n" form an angle o divided by
the bisector MB oriented at an angle of 45° to the X axis.
Hence, we have: v' =45° —o/2 and v" =45° + o/2. The
sum of the angles v' + v" = 90°. Therefore, when the
bisector makes an angle of 45° with the coordinate
axes, the light intensity B is also zero. This is the con-
dition for the isogyre passage through a specified point
of the conoscopic pattern. On the basis of this condi-
tion, we can formulate the following definition: an
isogyre is a locus in the rear focal plane of the objective
of a polarization microscope, in which the bisectors of
the angles between the projections of the vectors of
light oscillations in the crystal plate are oriented at an
angle of 45° to the directions of light oscillations in
Nicols [10].

The angular coefficients k; and k, of the MN, and
MN;, lines have the form

k, = tanv' = tan(45°-0o/2),

2
tan(45° + a/2). @

k, = tanv" =

Since tan(45° — o/2)tan(45° + 0y/2) =1 at any val-
ues of a, the equality

klkZ = 1 (3)
18 valid.

This laconic formula is a key to the derivation of the
isogyre equation. It allows one to exclude from consid-
eration physical characteristics, i.e., light intensity.
Thus, we will deal below only with geometric quanti-
ties.

Formula (1) was used to reproduce a conoscopic
pattern in the conoscope field of view [12]. The result
obtained is similar to that reported in [7]; however, in
contrast to [7], the orientations of the crystal optical
axes were set as the initial data for calculation in [12].
The advantage of this approach is the simplicity of
determining the directions of light oscillations in the
crystal by the Fresnel rule.

The interference pattern observed in a conoscope is
adequately reflected on the orthogonal projection of the
spherical surface of the directions of light oscillations
in a crystal. An arbitrary point M on a sphere of radius
R is projected on the plane of projection of P to the
point M' (Fig. 2a). The distance between the point M'
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Fig. 1. Conditions for the passage of the isogyre through a
specified point M of a conoscopic pattern. OX and OY are
the Cartesian coordinate axes, with which the directions of
light oscillations in the polarizer P/ and the analyzer An
coincide.

(a) (b)
o M M X

~ N M"

Z
N M
p
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Fig. 2. Orthogonal and gnomonic projections: (a) the cross
section perpendicular to the projection plane P and (b) the
projection plane P lying in the drawing plane. X, ¥, and Z are
the Cartesian coordinate axes.

P

and the projection center O' is O'M' = NM = Rsinp,
where p is the polar distance of the point M, which is
equal to the length of the arc O'M. If we assume that
R =1, O'M = sinp. The field of the orthogonal projec-
tion is limited by the circle with the radius equal to the
radius of the projected sphere.

In the gnomonic projection, the image of the point
M is obtained at the intersection of the continuation of
the radius OM with the plane of the projection P. The
distance O'M" between the point M" and the center O'
of the projection is tanp . The projection field is not
limited by anything and tends toward infinity at p = 90°.

It should be noted that the conoscopic pattern
observed on a screen, obtained with a point light
source, corresponds to the gnomonic projection.

Recalculation of the gnomonic coordinates x, y to
the orthogonal coordinates x', y' (Fig. 2b) and vice versa
is performed by the formulas

' X ! Y
X ==, ) = =,
A/x2+y2+1 A/x2+y2+1 @)
xl '
X = , Yy = yz
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Fig. 3. Axonometric projection of the main optical cross
sections and the planes of light oscillations in a biaxial
crystal.

The oblique light ray OM, after passing through the
crystal plate C, intersects the projection plane P at the
point M with the gnomonic coordinates x, y, 1 (Fig. 3).
The applicate z is equal to unity since it is arbitrarily
assumed that the projection plane is spaced from the
coordinate plane XOY by R = 1 (Fig. 2). Two mutually
perpendicular light oscillation vectors N; and N, give

projections N| and N, on the P plane (Fig. 3). It is nec-

essary to determine the direction (angular coefficients)
of these projections if the gnomonic coordinates of the
points A,(a;, by, 1) and A,(a,, b,, 1) of intersection of
the optical axes with the sphere are known.

According to the Fresnel theorem, light oscillations
in biaxial crystals are directed along the bisectors of the
angles between the main cross sections of the indica-
trix. The main cross section of an indicatrix is the plane
passing through the normal to the wave and optical axis
of the crystal. The indicatrix of a biaxial crystal obvi-
ously has two main cross sections, S; and S,. Their
equations can be written in the general form as

Ajx+ B y+Cz2=0, (5)

where A, B, and C are the coefficients of equations and
X, ¥, and z are the coordinates of points in the plane in
3D space.

The main cross sections S; and S, pass through the
points with known gnomonic coordinates (in parenthe-
ses): the origin of coordinates O(0, 0, 0), the point M(x,
v, 1), and the points A (a,, b;, 1) and A,(a,, b,, 1). Coef-
ficients of Eq. (5), which are calculated from the coor-
dinates of these points, have the following values (it is
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taken into account for C, and C, that z = 1):
Ay =biy-y,
Ci, = ~(A2x+ B 1y).

Light oscillations in a crystal occur in the planes B,
and B, of the bisectors of the dihedral angles formed by
the main cross sections S; and S, (the plane B, is per-
pendicular to the plane B,). Both planes enter the bun-
dle of planes; their equations can be written, respec-
tively, as

(A +AAY))x + (B +ABy)y+ (C,+ACy)z
(A} —AA)x+ (B, —AB,)y+(C,—ACy)z

where A is a coefficient.

After writing the expressions for cosines of the
angles between B, and S, and S, and equating their
right-hand sides to each other, we obtain

B, =x-a,,

(6)

0. 7
0’()

A= (AT+ B+ CHYIAZ+ B2+ C) (8)

Thus, we have Egs. (7) of two mutually perpendicu-
lar planes B, and B,, where light oscillations occur
(vectors ON,; and ON,). Lines of intersection of these
planes with the plane P form a gnomonic projection of

the light oscillation vectors ON; and ON, . Substitut-
ing z = 1 into (7), we obtain equations of the straight

lines ON| and ON:
yi = —[x(A; +AA,) + (C, + AC,)]/(B, + AB,),
ya = —[x(A;—AAy)) + (C, - ACy)]/(B, - AB,).

The angular coefficients k, and k, of these lines are,
obviously,

ki = —(A, +AA,)/(B, + AB,),
k, = —(A, - AA,)/(B, - AB,).

Using successively (10), (8), and (6), we find from
(3) that

(10)

3 3 2 2 2 2
bx +ay —ax"y—-bxy —cx —cy
+2(d-2)xy+2bx+2ay-2c = 0,

where x, y are the gnomonic coordinates of isogyre
points,

(11)

a=a1+a2, b=b1+b2’ (12)

Cc = a1b2+azb1, d = a1a2+b1b2.

Thus, we have derived a mathematical model of
isogyre in the form of a third-power equation in gno-
monic coordinates. It can be transformed into the cubic
equation y* + py? + gy + r = 0, which has an analytic
solution [13].

Replacing x and y with their values from formulas (4),
we can transform Eq. (11) into the “actual” isogyre
equation corresponding to the isogyre shape observed
Vol. 51
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in practice. As a result, a cuambersome equation of sixth
order with 16 terms is obtained. It has no analytic solu-
tion and cannot be used in practice. For this reason, it is
necessary to calculate the coordinates of isogyre points
along the specified directions of optical axes via gno-
monic equation (11) and recount the obtained results
into the orthogonal coordinates x' and y' by formula (4).

It should be noted that this recalculation is not
required when a conoscopic pattern obtained with a
point light source is projected on the screen. In this
case, the isogyre equation in its initial form can be
applied to the conoscopic pattern.

Results of calculation of the isogyre according to
Eq. (11) in different cross sections of uniaxial and biax-
ial crystals for different angles of rotation of the micro-
scope table showed that the isogyre displayed on a
screen completely corresponds to the conoscopic pat-
tern observed in practice.

The results of the construction of the axial line of the
isogyre on the total orthogonal projection at a cono-
scopic angle of 90° (Fig. 4) are of particular interest.
These data make it possible to reconstruct the virtual
conoscopic pattern beyond the conoscope field of view,
where the pattern cannot be observed using conven-
tional objectives, because of their limited aperture. It
has been revealed that the cross bars of a uniaxial crys-
tal look straight-line only within the conoscope field of
view with a 60" objective (small circle within a large
circle, Fig. 4a). Beyond this field, two bars merge at the
boundary of the projection at the point spaced by 45°
from the coordinatea axes in the quadrant where the
optical axis is located. The two other ends of the bars
undergo bending and rest on the boundary of the pro-
jection in two opposite quadrants, at the points equidis-
tant from the coordinate axes.

In the cross section of a biaxial crystal perpendicular
to the plane of optical axes, at a certain orientation of
the crystal, the isogyre has the shape of a double cross
(Fig. 4b).

In a skew cross section of a biaxial crystal, the pres-
ence of the third branch of the isogyre is surprising.
This branch has never been observed in practice, since
it is located at the boundary of the projection outside
the conoscope field of view (Fig. 4c). The largest
nearby branch /-2 passes through the point of emer-
gence of the optical axis A, which is located closer to
the projection center than the point A, corresponding to
the second optical axis, with which the far branch 3-5
is related. The third branch 4-6 does not pass through
the points A; and A,. The ends of all three isogyre
branches rest on the boundary circle. From six isogyre
ends, four (/, 2, 3, and 4) are rigidly bound to the fixed
points spaced from the coordinates axes by 45°. These
points are present in the conoscopic patterns of all cross
sections of the crystals; they are immobile at the rota-
tion of the microscope table. In contrast, ends 5 and 6
are mobile. Their position depends on the crystal cross
section and the angle of rotation of the crystal plate. It
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Fig. 4. The axial isogyre lines on the complete orthogonal
projection (computer reproduction): (a) the skew cross sec-
tion of a uniaxial crystal, (b) the double-cross figure for a
biaxial crystal in the cross section perpendicular to the plane
of optical axes, and (c) the isogyre with three branches in
the skew cross section of a biaxial crystal with 2V = 85°.

can be seen in the figure that the isogyre, resting on the
projection boundary, is not interrupted but continues at
the opposite point on the boundary circle.

Figure 5 shows the behavior of the isogyre of the
skew cross section of a biaxial crystal on the complete
orthogonal projection during crystal rotation. In the ini-
tial position (the crystal is extinguished), the nearby
branch of the isogyre passes through the projection cen-
ter (0 = 0°). Two other branches are located at different
sides from it.

Under crystal rotation by an angle in the range 0° <
® < 90°, the nearby branch of the isogyre consecutively
forms a skew cross, while connecting first with the
branch having no axis (®w = 4.7°) and then with the far
branch (0 = 69°). Thus, as a result of the crystal rota-
tion by 360°, the cross is formed eight times. When
conventional objectives are used, the cross figure arises
only four times during the complete rotation of the
table.

The nearby branch of the isogyre, in any position,
always rests on the fixed points and only this branch can
cross the projection center. The two other branches rest
by one end on a fixed point and by the other end on a
mobile point, which changes its location during crystal
rotation, while moving along the circle limiting the pro-
jection field.

EXAMPLE OF THE USE OF THE ISOGYRE
EQUATION

As an example of application of the isogyre equa-
tion in practice, let us describe the technique of cono-
scopic measurement of the angle of inclination of the
optical axis of a uniaxial crystal, as proposed in [14]
and used for routine measurements of the orientation of
the optical axes in quartz grains in order to detect the
preferential orientation of this mineral in laps of rocks
(microstructural analysis) [15]. In the initial position
(the crystal is extinguished), the optical axis A is on the
coordinate axis Y outside the conoscope field of view;
therefore, it is inaccessible for direct observation and
measurement of its inclination p4 (the arc OA) using an
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Fig. 5. Isogyre on the complete orthogonal projection and its behavior under rotation of the microscope table for the skew cross
section of a biaxial crystal with 2V = 47°. ® is the angle of rotation of the crystal plate from the position of the crystal extinguish-

ment.

ocular micrometer (Fig. 6a). The gnomonic coordinates
of the optical axis in this position are a; = 0 and b, =

tanp, .

As aresult of the rotation of the microscope table by
some angle m, the isogyre shifts to the right and reaches
the mark M on the X axis (Fig. 6b). One of the divisions
of the micrometer ocular scale can be used as a mark.
Its gnomonic coordinates are x = tanp,,, y = 0, where
Py is the angular distance between the mark and the
center O (the polar distance), which is known from the
calibration of the ocular micrometer scale. The coordi-
nates of the point of emergence of the optical axis in
this position are

a, = tanp,sin®, b, = tanp,cos. (13)

Since the isogyre point M lies on the X axis (y = 0),
Eq. (11) takes the form (x? + 2)(bx — ¢) = 0. In this case,
Eq. (11) has a single real root

x=c/b. (14)

For a uniaxial crystal, it follows from (12) that b =
2b, and ¢ = 2a,b,; hence, we find from (14) that x,, =
a, . It can be seen from this equality that, under rotation
of the microscope table, the abscissas of the optical axis
A of the uniaxial crystal and the point of intersection of
the isogyre with the X axis are always equal to each
other; therefore, we find from (13) that

tanp, = tanp,,/sin®. (15)

We have also solved a similar, but much more diffi-
cult, problem of determining the orientation of the opti-
cal axes for skew cross sections of a biaxial crystal. To
solve this problem, it is necessary to measure the coor-
dinates x and y of three points of the isogyre; substitute
them into Eq. (11); solve the system of three equations;
and find the parameters a, b, ¢, and d. Knowing these
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parameters and using (12), one can calculate the gno-
monic coordinates of the optical axes. These coordi-
nates are recalculated into spherical coordinates and,
furthermore, used to determine graphically (on a ste-
reographic grid) or analytically (by formulas of spheri-
cal trigonometry) the angle of the optical axes and the
orientation of the optical indicatrix.

It is known that the application of the conoscopic
method is related to a number of limitations restricting
its potential. Specifically:

(1) Only the cross sections of the crystal oriented
perpendicular to the sharp bisector can be used to mea-
sure the angle 2V between the optical axes.

(i1) The measured angle 2V should not exceed 50°—
60°.

Fig. 6. Measurement of the inclination of the optical axis of
a uniaxial crystal (gnomonic projection): (a) initial position
(the crystal extinguished) and (b) position after the rotation
of the microscope table by an angle .
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(iii) The orientation of the optical indicatrix cannot
be determined.

The use of the isogyre equation makes it possible to
remove these limitations, as a result of which the cono-
scopic method allows obtainment of results comparable
with those obtained on a Fedorov universal table.

CONCLUSIONS

As a result of the investigations performed, a gno-
monic isogyre equation has been derived. In contrast to
the generally accepted concept, this equation turned out
to correspond not to a hyperbola but to a more complex
line of the third order. The axial line of the isogyre has
been plotted in the maximum angle range (180°).
Unusual shapes of the isogyre and specific features of
its behavior during crystal rotation have been revealed,
which previously were not described in the literature
and were not observed in operation with conventional
objectives owing to their limited aperture.

It is proposed to use the isogyre equation as a basis
for development of new techniques for measuring the
angle of optical axes and the elements of orientation of
the optical indicatrix. Such techniques would signifi-
cantly expand the potential of the conoscopic method.
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